Программистский Камень

Колстон Санджер

Алан Картер
Перевод с английского
Предисловие
(от переводчика)

Данный очерк содержит философское видение авторов на мир программной индустрии, труда программистов и менеджеров больших программных проектов. Сами авторы уже много лет занимаются организацией деятельности групп разработчиков программного обеспечения, и сами имеют большой стаж программирования сложных вычислительных комплексов.
Очерк оформлен в виде курса лекций для студентов старших курсов специальностей связанных с вычислительной техникой и программной индустрией. Основная идея курса состоит в том, что бы дать будущим специалистам представление о всей сложности и уникальности труда программиста в отличие от труда системного аналитика или разработчика аппаратного обеспечения. Помимо этого, авторы небезосновательно пытаются рассеять укрепившийся в сознании руководителей программных проектов миф о возможности создания некоего универсального инструментального средства (либо такой организации труда программистов), используя который разработчики смогли бы: а) значительно упростить свой труд
; б) сделать результат своего труда легко масштабируемым и наращиваемым
 и, при этом, в) не содержащим программных ошибок и не нуждающимся в процессе отладки (который на все 100% соответствовал бы техническому заданию).
На данный момент, компьютерная наука далеко продвинулась в поисках своего “философского камня”, однако его практическое применение только усугубляет положение и не приводит к облегчению труда разработчиков. Авторами удачно подобраны факты и примеры, на которых показан крах сложившегося стереотипа и том, что большая группа разработчиков программного обеспечения может за меньшие сроки справиться с поставленной задачей, нежели группа из меньшего количества человек или чем один высоко квалифицированный специалист.

Помимо этого, авторы пытаются раскрыть для аудитории принципы и концепции мышления программиста в процессе творческого труда, а так же выявить мотивы, двигающие человеком в процессе его творчества. Авторы неоднократно подчеркивают, что “программизм” содержит в себе больше от искусства, нежели от сухой науки или рутинной механической деятельности. И в этом смысле программист рассматривается авторами как Созидатель, а каждая созданная им сложная система представляет собой шедевр.

Р.Н. Залата
1. Размышление о мышлении
Корни проблемы
Работа по созданию данного курса была мотивирована поисками ответа на вопрос: почему в программной индустрии есть люди, которые на один или два порядка более полезны и созидательны нежели все остальные. Если бы это было так же справедливо о строителях-каменщиках, строительная индустрия была бы очень удивлена и непременно пыталась бы узнать почему. Конечно, можно заснять деятельность каменщиков на видео, а позже проанализировать, что же все так и происходит на досуге. Однако, совершенно не возможно увидеть, того, что делают великие специалисты программной индустрии, и, по определенным причинам, они сами не могут объяснить в чем суть дела, хотя многие из них очень бы этого хотели.
Мы знаем, что эти “элементы” индустрии более производительны когда занимаются делом в одиночестве. Ни финансовыми, ни административными программами не возможно на это повлиять. Инновационные программы по исследованию Качества, которые недвусмысленно включают в себя холистические
 концепции, на подобие описанных Робертом Пирсингом в его произведении “Дзен и Искусство Обслуживания Мотоцикла”, рассматриваются индустрией по большей части как чрезмерно “радикальные”, что бы экспериментировать с ним, и в тоже время они недостаточны для описания нашего явления. Ни годы опыта, ни годы академических исследований не вносят ясности в вопрос.
На наш взгляд, существует только один путь продолжения изучения подобных явлений, так как индустрия в поисках объективных причин все еще не нашла тот самый Х-фактор, путь лежит через изучение субъективно опыта вовлеченных в процесс людей.
Достижение понимания происходящему заняло достаточно много времени, тем не менее ключевые идеи известны всем нам и сейчас. В процессе изучения, мы узнали много интересного о складе ума людей, которых принято называть успешными специалистами, и разработали попутно несколько упражнений, которые помогли людям разобраться в проблеме.

Таким образом, материал собранный в этом курсе разрабатывался в течении нескольких лет, и, в виде набора идей, эмпирически выявленных в результате эксперимента, позже был уложен в логическую картину, а также на основе логических заключений составленных из этой картины.
Этот курс нацелен донести элемент практики и рассуждения по отношению ко всему, о чем часто упоминается, но мало где описывается. Многие из глав представляют собой нечто, что программисты обсуждают за кружкой пива. Наверное, это очень странно, что никто не пытается выяснить как проблемные вопросы, очень важные с точки зрения программистов, соотносятся с “формальной” структурой современной инженерной науки. Это как раз то, о чем пойдет речь.
Мы обнаружили, потому, как ввязались в это дело, что большинство программистов вместе со своими коллегами находят способы возложить вопросы, беспокоящие их в течение многих лет, в сущность своего труда. Мы же попросим вас расслабиться и насладиться чтением, так как полагаем, что вы поступаете точно так же.
Маппинг
 и разработка программ
Программная индустрия, как отрасль, находится в ужасной опасности. Так называемый “Программный Кризис” был идентифицирован еще в 1968 году, но не смотря на тридцать лет непрерывных усилий, с сотнями опубликованных, предположительно новых фундаментальных концепций, общее состоянии индустрии ужасающее. Проекты массами выскакивают за рамки их бюджетов или проваливаются целиком в пучине. Ожидания отдачи похоже на черную магию, большинство проектов решают проблемы потребителей, которые стояли вчера, но не те, которые остро поставлены сегодня. С технической точки зрения, ужасное качество программного кода
 приводит к проблемам с гибкостью в обслуживании и высокой цены эксплуатации. И все так и, где-то там внутри программной индустрии, существуют индивидуалы и группки разработчиков, которые постигают повторяющийся успех. Есть много способов измерить полезность программистов. Некоторые из программистов в сотни раз более ценны и полезны чем все остальное большинство, даже измеряя несколькими методами. Если бы только вся индустрия так же трудилась, как вышеозначенное меньшинство отличных работников, извлеченная экономическая польза была бы непостижимо громадной. Если бы была возможность создавать сложные, надежные программные продукты быстро и дешево, интеллект общества также возрос, и тем самым, делая возможными идеи от обмена автомобилями до рациональных способов регулирования социальной безопасности
.
Внутри такой модели проблему можно понять. То, что представляет собой обществом культивируемое традиционное мышление, (мы назовем его “паккинг”
) основано на действии. Что бы быть хорошим каменщиком паккер (то есть человек с традиционным общественным сознанием и мышлением) должен знать функции каменщика и делать то, что делает каменщик. С другой стороны, а что же делает разработчик программного обеспечения ? Наиболее распространенная и развитая среди паккеров модель программирования представляет собой концепцию “Программной Фабрики”. В ней, заявленные требования покупателей поступают через одну дверь фабрики и обрабатываются работниками, следующих описанным в документации процедурам. Когда конвейер выполнил всю свою работу и прошел все стадии, готовые программные продукты выходят из другой двери. Так работают заводы по производству автомобилей.
Проблема в том, что аналогия с автомобильными заводами очень относительна. Большинство автомобильных заводов заполнены до отказа рабочими, которые используют машины и механизмы для создания автомобилей. Но, сзади у каждого огромного завода есть небольшой офис, где еще один работник определяет как использовать ресурсы завода, чтобы произвести как можно больше автомобилей.

Труженики программной мастерской не похожи на тех, кто работает в автомобильном цеху. Работники автомобильного цеха сегодня могут быть заменены автоматическими машинами – роботами, однако, все равно необходим кто-то, кто используя творческий подход установит и настроит весь такой завод. Программисты выполняют работу, подобную той, что выполняется в маленьком офисе на заднем дворике завода, и мы никогда не сможем понять что-либо о том, что происходит в нем, пребывая в цехе самого завода.
Паккеры, которые являются сторонниками безкомпромиссной, основанной на технологическом процессе Программной Фабрике, заявляют о возможности создания Искусственного Интеллекта умеющего симулировать конвейерного разработчика программ, и делать это с помощью людей, которые начиняют его листами бумаги как свой компьютер. К сожалению, паккинг не понимает всего процесса производства программ и от этого сильно смущается. Порой, паккинг действительно производит глупые вещи.

Чтобы понять что программисты делают на самом деле, необходима альтернативная стратегия мышления (мы называем ее маппинг), потому как программизм в своей основе представляет собой процесс интернализации
 возможностей системы, сосредоточивания на природе проблемы, на достижении желаемых результатов и выражении инсайта (проницательности и интуиции) в терминах какого либо языка программирования. Все это относится к исследованию подробностей о наших желаниях и пониманию их в таком ракурсе, чтобы не потерять способность к отслеживанию всей создаваемой сложности. Мапперски проблемный коллапс
 может производить
� По аналогии с Философским Камнем, поиск которого стал смыслом жизни многих ученых алхимиков средних веков. В контексте данного курса, Программистский Камень понимается как некое Универсальное средство, которое позволило бы волею мысли мгновенно получать готовые программыне продукты и комплексы на 100% адекватные техническому заданию и не содержание ошибок. Естественно это является такой же утопией как и поиски Философского Камня, однако человечество не может смириться с этим фактом.

� Например, путем изучения и использования какого ни будь одного Универсального языка программирования, вместо того укрепившейся практики использования множества (порой более десятка) разных, узко специализированных, языков и программных инструментов в процессе работы над проектом.

� То есть программный продукт, который был бы легко адаптируемым, изменяемым и расширяемым новыми возможностями.

� Холистика – псевдо-наука изучающая взаимодействия всего и вся, от элементарных частиц до Вселенной, на процессы и явления, рационального объяснения которым не дано. Холистика была очень популярна в средние века у тех самых алхимиков, которые искали Философский Камень. Прим. переводчика.

� Маппинг – термин из новейшей психологической науки, изучающей методы мышления и построения концепций человеком. Маппинг, в дословном переводе с английского, означает построение карт. Таким образом, маппинг есть способ мышления на основе ментальных “карт”, которые представляют собой некий граф, в узлах которого расположены знания, а ребрами являются связи между ними. Мышление в терминах маппинга представляет собой непрерывный процесс построения графа Знания, постепенно заполняя недостающие узлы и связи в нем.

� Здесь и далее под кодом имеется в виду исходные тексты программных продуктов на языках высокого уровня, качество которых могут порой быть настолько ужасны, что при одном взгляде можно обнаружить с десяток логических ошибок.

� Видимо здесь авторами имеются в виду некоторые идеи по организации идеального общества, в котором термин “безопасность” не имел бы смысла, напротив того, что мы имеем сейчас.

� От английского слова pack – паковать. Паккинг, образ мышления и поведения на подобии станка-автомата упаковщика, которые непрерывно, рутинно изо дня в день выполняет одну и туже функцию – пакует брикеты с Доширак.

� Интернализация – процесс сосредотачивания на внутренностях одной системы, ее поведении или свойствах.

� Проблемный коллапс есть способ устранения проблемы ее полным, основательным изучением и пониманием всей ее сущности до такой степени, что проблема просто перестает существовать.

